Smart meter

Jump to navigation Jump to search
Example of a smart meter based on Open smart grid protocol (OSGP) in use in Europe that has the ability to reduce load, disconnect-reconnect remotely, and interface to gas and water meters.
Newer retrofitted U.S. domestic digital electricity meter Elster REX[1] with 900MHz[2]mesh network topology for automatic meter reading and "EnergyAxis" time-of-use metering.[3][4][5]
Each local mesh networked smart meter has a hub such as this Elster A3 Type A30, which interfaces 900 MHz smart meters to the metering automation server via a landline.[6]
A very old and rusted box housing a smart meter as found near a Circle K supermarket along the main road in South Bali near Gianyar.

A smart meter is an electronic device that records consumption of electric energy and communicates the information to the electricity supplier for monitoring and billing. Smart meters typically record energy hourly or more frequently, and report at least daily.[7] Smart meters enable two-way communication between the meter and the central system. Such an advanced metering infrastructure (AMI) differs from automatic meter reading (AMR) in that it enables two-way communication between the meter and the supplier. Communications from the meter to the network may be wireless, or via fixed wired connections such as power line carrier (PLC). Wireless communication options in common use include cellular communications (which can be expensive), Wi-Fi (readily available), wireless ad hoc networks over Wi-Fi, wireless mesh networks, low power long range wireless (LoRa), ZigBee (low power, low data rate wireless), and Wi-SUN (Smart Utility Networks).

Overview

The term Smart Meter often refers to an electricity meter, but it also may mean a device measuring natural gas or water consumption.

Similar meters, usually referred to as interval or time-of-use meters, have existed for years, but "Smart Meters" usually involve real-time or near real-time sensors, power outage notification, and power quality monitoring. These additional features are more than simple automated meter reading (AMR). They are similar in many respects to Advanced Metering Infrastructure (AMI) meters. Interval and time-of-use meters historically have been installed to measure commercial and industrial customers, but may not have automatic reading.

Research[which?] by the UK consumer group, showed that as many as one in three confuse smart meters with energy monitors, also known as in-home display monitors.[8] The roll-out of smart meters is claimed to be one strategy for saving energy. While energy suppliers in the UK could save around £300 million a year from their introduction, benefits to users of electricity depends on their using the information to change their pattern of energy use. For example, smart meters may facilitate taking advantage of lower off-peak time tariffs, and selling electricity back to the grid with net metering.[citation needed]

In the UK, Smart Energy GB is the campaign for a smarter Britain. It's our task to help everyone in Great Britain understand smart meters, the national rollout and how to use their new meters to be cleaner and greener with their energy use. Their national campaign is reaching households in England, Scotland and Wales.[9]

The installed base of smart meters in Europe at the end of 2008 was about 39 million units, according to analyst firm Berg Insight.[10] Globally, Pike Research found that smart meter shipments were 17.4 million units for the first quarter of 2011.[11] Visiongain determined that the value of the global smart meter market would reach US$7 billion in 2012.[12]

Smart meters may be part of a smart grid, but do not themselves constitute a smart grid.[13]

Brief history

In 1972, Theodore Paraskevakos, while working with Boeing in Huntsville, Alabama, developed a sensor monitoring system that used digital transmission for security, fire, and medical alarm systems as well as meter reading capabilities. This technology was a spin-off from the automatic telephone line identification system, now known as Caller ID.

In 1974, Paraskevakos was awarded a U.S. patent for this technology.[14] In 1977, he launched Metretek, Inc.[3], which developed and produced the first fully automated, commercially available remote meter reading and load management system. Since this system was developed pre-Internet, Metretek utilized the IBM series 1 mini-computer. For this approach, Paraskevakos and Metretek were awarded multiple patents.[15]

Purpose

Since the inception of electricity deregulation and market-driven pricing throughout the world, utilities have been looking for a means to match consumption with generation. Non-smart electrical and gas meters only measure total consumption, providing no information of when the energy was consumed.[16] Smart meters provide a way of measuring this site-specific information, allowing utility companies to charge different prices for consumption according to the time of day and the season.[17]

Utility companies say that smart metering offers potential benefits to householders. These include, a) an end to estimated bills, which are a major source of complaints for many customers b) a tool to help consumers better manage their energy purchases—stating that smart meters with a display outside their homes could provide up-to-date information on gas and electricity consumption and in doing so help people to manage their energy use and reduce their energy bills. Electricity pricing usually peaks at certain predictable times of the day and the season. In particular, if generation is constrained, prices can rise if power from other jurisdictions or more costly generation is brought online. Proponents assert that billing customers at a higher rate for peak times encourages consumers to adjust their consumption habits to be more responsive to market prices and assert further, that regulatory and market design agencies hope these "price signals" could delay the construction of additional generation or at least the purchase of energy from higher priced sources, thereby controlling the steady and rapid increase of electricity prices.[citation needed] There are some concerns, however, that low income and vulnerable consumers may not benefit from intraday time-of-use tariffs.

An academic study based on existing trials showed that homeowners' electricity consumption on average is reduced by approximately 3-5%.[18]

The ability to connect/disconnect service and read meter consumption remotely are major labor savings for the utility and can cause large layoffs of meter readers.[19]


Criticism

Citizens Advice said in August 2018 that 80% of people with a smart meter were happy with them, but it had 1,000 calls in 2017 about problems, including first-generation smart meters losing their functionality, aggressive sales practices, and still having to send smart meter readings.[20]

Ross Anderson of the Foundation for Information Policy Research has criticised the UK's programme on grounds that it is unlikely to lower energy consumption, is rushed and expensive, and does not promote metering competition. Anderson writes, "the proposed architecture ensures continued dominance of metering by energy industry incumbents whose financial interests are in selling more energy rather than less", and urged ministers "to kill the project and instead promote competition in domestic energy metering, as the Germans do – and as the UK already has in industrial metering. Every consumer should have the right to appoint the meter operator of their choice".[21]

In a 2011 submission to the Public Accounts Committee, Anderson wrote that Ofgem were "making all the classic mistakes which have been known for years to lead to public-sector IT project failures" and that the "most critical part of the project—how smart meters will talk to domestic appliances so as to facilitate demand response—is essentially ignored."[22]

The high number of SMETS1 meters installed has been criticised by Peter Earl, head of energy at the price comparison website comparethemarket.com. He said, "The Government expected there would only be a small number of the first-generation of smart meters before Smets II came in, but the reality is there are now at least five million and perhaps as many as 10 million Smets I meters."[23]

UK smart meters use the mobile phone network to communicate, so they do not work properly when phone coverage is weak. A solution has been proposed, but was not operational as of March 2017.[23]

In March 2018 the National Audit Office (NAO), which watches over public spending, opened an investigation into the smart meter programme, which had cost £11bn by then, paid for by electricity users through higher bills.[24][25] The National Audit Office published the findings of its investigation in a report titled "Rolling out smart meters" published on November 2018.[26] The report, amongst other findings, indicated that the number of smart meters installed in the UK would fall materially short of the Department for Business, Energy & Industrial Strategy (BEIS) original ambitions of all UK consumers having a smart meter installed by 2020.

Ross Anderson and Alex Henney wrote that "Ed Miliband cooked the books" to make the case for smart meters appear economically viable. They say that the first three cost-benefit analyses of residential smart meters found that it would cost more than it would save, but "ministers kept on trying until they got a positive result... To achieve 'profitability' the previous government stretched the assumptions shamelessly".[27]

An economist at Ofgem with oversight of the rollout of the smart meter programme who raised concerns with his manager was threatened with imprisonment under a law intended to protect national security.[28] The Employment Appeal Tribunal found that the law was in contravention of the European Convention on Human Rights.[29]

Technology

Connectivity

Communication is a critical technological requirement for smart meters. Each meter must be able to reliably and securely communicate the information collected to a central location. Considering the varying environments and locations where meters are found, that problem can be daunting. Among the solutions proposed are: the use of cell and pager networks, satellite, licensed radio, combination licensed and unlicensed radio, and power line communication. Not only the medium used for communication purposes, but also the type of network used, is critical. As such, one would find: fixed wireless, wireless mesh network and wireless ad hoc networks, or a combination of the two. There are several other potential network configurations possible, including the use of Wi-Fi and other internet related networks. To date no one solution seems to be optimal for all applications. Rural utilities have very different communication problems from urban utilities or utilities located in difficult locations such as mountainous regions or areas ill-served by wireless and internet companies.

In addition to communication with the head-end network, smart meters may need to be part of a home area network, which can include an in-premises display and a hub to interface one or more meters with the head end. Technologies for this network vary from country to country, but include power line communication, wireless ad hoc network, and ZigBee.

Protocols

ANSI C12.18 is an ANSI standard that describes a protocol used for two-way communications with a meter, mostly used in North American markets. The C12.18 standard is written specifically for meter communications via an ANSI Type 2 Optical Port, and specifies lower-level protocol details. ANSI C12.19 specifies the data tables that are used. ANSI C12.21 is an extension of C12.18 written for modem instead of optical communications, so it is better suited to automatic meter reading.

IEC 61107 is a communication protocol for smart meters published by the IEC that is widely used for utility meters in the European Union. It is superseded by IEC 62056, but remains in wide use because it is simple and well-accepted. It sends ASCII data using a serial port. The physical media are either modulated light, sent with an LED and received with a photodiode, or a pair of wires, usually modulated by EIA-485. The protocol is half-duplex. IEC 61107 is related to, and sometimes wrongly confused with, the FLAG protocol. Ferranti and Landis+Gyr were early proponents of an interface standard that eventually became a sub-set of IEC1107.

The Open Smart Grid Protocol (OSGP) is a family of specifications published by the European Telecommunications Standards Institute (ETSI) used in conjunction with the ISO/IEC 14908 control networking standard for smart metering and smart grid applications. Millions of smart meters based on OSGP are deployed worldwide.[30] On July 15, 2015, the OSGP Alliance announced the release of a new security protocol (OSGP-AES-128-PSK) and its availability from OSGP vendors[31]. This deprecated the original OSGP-RC4-PSK security protocol which had been identified to be vulnerable[32][33].

There is a growing trend toward the use of TCP/IP technology as a common communication platform for Smart Meter applications, so that utilities can deploy multiple communication systems, while using IP technology as a common management platform.[34][35] A universal metering interface would allow for development and mass production of smart meters and smart grid devices prior to the communication standards being set, and then for the relevant communication modules to be easily added or switched when they are. This would lower the risk of investing in the wrong standard as well as permit a single product to be used globally even if regional communication standards vary.[36]

Some smart meters may use a test IR LED to transmit non-encrypted usage data that bypasses meter security by transmitting lower level data in real time.[37]

Data management

The other critical technology for smart meter systems is the information technology at the utility that integrates the Smart Meter networks with the utility applications, such as billing and CIS. This includes the Meter Data Management system.

It also is important for smart grid implementations that power line communication (PLC) technologies used within the home over a Home Area Network (HAN), are standardized and compatible. The HAN allows HVAC systems and other household appliances to communicate with the smart meter, and from there to the utility. Currently there are several broadband or narrowband standards in place, or being developed, that are not yet compatible. To address this issue, the National Institute for Standards and Technology (NIST) established the PAP15 group, which studies and recommends coexistence mechanisms with a focus on the harmonization of PLC standards for the HAN. The objective of the group is to ensure that all PLC technologies selected for the HAN coexist as a minimum. The two main broadband PLC technologies selected are the HomePlug AV / IEEE 1901 and ITU-T G.hn technologies.[38] Technical working groups within these organizations are working to develop appropriate coexistence mechanisms. The HomePlug Powerline Alliance has developed a new standard for smart grid HAN communications called the HomePlug Green PHY specification. It is interoperable and coexistent with the widely deployed HomePlug AV technology and with the new IEEE 1901 global standard and is based on Broadband OFDM technology. ITU-T commissioned in 2010 a new project called G.hnem, to address the home networking aspects of energy management, built upon existing Low Frequency Narrowband OFDM technologies.

Google.org's PowerMeter, until its demise in 2011[39], was able to use a smart meter for tracking electricity usage,[40] as can eMeter's Energy Engage as in, for example, the PowerCentsDC(TM) demand response program.[citation needed]

Advanced metering infrastructure

Advanced Metering Infrastructure (AMI) refers to systems that measure, collect, and analyze energy usage, and communicate with metering devices such as electricity meters, gas meters, heat meters, and water meters, either on request or on a schedule. These systems include hardware, software, communications, consumer energy displays and controllers, customer associated systems, meter data management software, and supplier business systems.

Government agencies and utilities are turning toward advanced metering infrastructure (AMI) systems as part of larger “smart grid” initiatives. AMI extends automatic meter reading (AMR) technology by providing two way meter communications, allowing commands to be sent toward the home for multiple purposes, including time-based pricing information, demand-response actions, or remote service disconnects. Wireless technologies are critical elements of the neighborhood network, aggregating a mesh configuration of up to thousands of meters for back haul to the utility’s IT headquarters.

The network between the measurement devices and business systems allows collection and distribution of information to customers, suppliers, utility companies, and service providers. This enables these businesses to participate in demand response services. Consumers can use information provided by the system to change their normal consumption patterns to take advantage of lower prices. Pricing can be used to curb growth of peak demand consumption. AMI differs from traditional automatic meter reading (AMR) in that it enables two-way communications with the meter. Systems only capable of meter readings do not qualify as AMI systems.[41]

Opposition and concerns

Some groups have expressed concerns regarding the cost, health, fire risk,[42]security and privacy effects of smart meters[43] and the remote controllable "kill switch" that is included with most of them. Many of these concerns regard wireless-only smart meters with no home energy monitoring or control or safety features. Metering-only solutions, while popular with utilities because they fit existing business models and have cheap up-front capital costs, often result in such "backlash". Often the entire smart grid and smart building concept is discredited in part by confusion about the difference between home control and home area network technology and AMI. The attorneys general of both Illinois and Connecticut have stated that they do not believe smart meters provide any financial benefit to consumers,[44] however, the cost of the installation of the new system is absorbed by those customers.

Security

Smart meters expose the power supply to cyberattacks that could lead to power outages, both by cutting off people's electricity[45] and by overloading the grid.[46] However many cyber security experts state that smart meters of UK and Germany have a relatively high cybersecurity and that any such attack there would thus require extraordinarily high efforts or financial resources.[47][48][49]

Implementing security protocols that protect these devices from malicious attacks has been problematic, due to their limited computational resources and long operational life.[50]

The current version of IEC 62056 includes the possibility to encrypt, authenticate, or sign the meter data.

One proposed smart meter data verification method involves analyzing the network traffic in real time to detect anomalies using an Intrusion Detection System (IDS) By identifying exploits as they are being leveraged by attackers, an IDS mitigates the suppliers' risks of energy theft by consumers and denial-of-service attacks by hackers.[51] Energy utilities must choose between a centralized IDS, embedded IDS, or dedicated IDS depending on the individual needs of the utility. Researchers have found that for a typical advanced metering infrastructure, the centralized IDS architecture is superior in terms of cost efficiency and security gains.[50]

In the United Kingdom, the Data Communication Company, which transports the commands from the supplier to the smart meter, performs an additional anomaly check on commands issued (and signed) by the energy supplier.

According to a report by Brian Krebs, in 2009 a Puerto Rico electricity supplier asked the FBI to investigate large-scale thefts of electricity related to its smart meters. The FBI found that former employees of the power company and the company that made the meters were being paid by consumers to reprogram the devices to show incorrect results, as well as teaching people how to do it themselves.[52]

Health and safety

Most health concerns about the meters arise from the pulsed radiofrequency (RF) radiation emitted by wireless smart meters.[53]

Members of the California State Assembly asked the California Council on Science and Technology (CCST) to study the issue of potential health impacts from smart meters. The CCST report in April 2011 found no health impacts, based both on lack of scientific evidence of harmful effects from radio frequency (RF) waves and that the RF exposure of people in their homes to smart meters is likely to be minuscule compared to RF exposure to cell phones and microwave ovens.[54]

Issues surrounding smart meters causing fires have also been reported, particularly involving the manufacturer Sensus. In 2012. PECO Energy Company replaced the Sensus meters it had deployed in the Philadelphia region after reports that a number of the units had overheated and caused fires. In July 2014, SaskPower, the province-run utility company of the Canadian province of Saskatchewan, halted its roll-out of Sensus meters after similar, isolated incidents were discovered. Shortly afterward, Portland General Electric announced that it would replace 70,000 smart meters that had been deployed in the state of Oregon after similar reports. The company noted that it had been aware of the issues since at least 2013, and that they were limited to certain models it had installed between 2010 and 2012.[55] On July 30, 2014, after a total of eight recent fire incidents involving the meters, SaskPower was ordered by the Government of Saskatchewan to immediately end its smart meter program, and remove the 105,000 smart meters it had installed.[56]

Privacy concerns

One technical reason for privacy concerns is that these meters send detailed information about how much electricity is being used each time. More frequent reports provide more detailed information. Infrequent reports may be of little benefit for the provider, as it doesn't allow as good demand management in the response of changing needs for electricity. On the other hand, very frequent reports would allow the utility company to infer behavioral patterns for the occupants of a house, such as when the members of the household are probably asleep or absent.[57] Current trends are to increase the frequency of reports. A solution that benefits both provider and user privacy would be to adapt the interval dynamically.[58] Another solution involves an energy storage installed at the household used to reshape the energy consumption profile.[59][60] In British Columbia the electric utility is government-owned and as such must comply with privacy laws that prevent the sale of data collected by smart meters; many parts of the world are serviced by private companies that are able to sell their data.[61] In Australia debt collectors can make use of the data to know when people are at home.[62] Used as evidence in a court case in Austin, Texas, police agencies secretly collected smart meter power usage data from thousands of residences to determine which used more power than "typical" to identify marijuana growing operations.[63]

Smart meter power data usage patterns can reveal much more than how much power is being used. Research has demonstrated that smart meters sampling power levels at two-second intervals can reliably identify when different electrical devices are in use.[64][65][66][67][68][69][70][71]

Ross Anderson has written about privacy concerns. He writes "It is not necessary for my meter to tell the power company, let alone the government, how much I used in every half-hour period last month"; that meters can provide "targeting information for burglars"; that detailed energy usage history can help energy companies to sell users exploitative contracts; and that there may be "a temptation for policymakers to use smart metering data to target any needed power cuts."[72]

Opt-out options

Reviews of smart meter programs, moratoriums, delays, and "opt-out" programs are some responses to the concerns of customers and government officials. In response to residents who did not want a smart meter, in June 2012 a utility in Hawaii changed their smart meter program to "opt out".[73] The utility said that once the smart grid installation project is nearing completion, KIUC may convert the deferral policy to an opt-out policy or program and may charge a fee to those members to cover the costs of servicing the traditional meters. Any fee would require approval from the Hawaii Public Utilities Commission.

After receiving numerous complaints about health, hacking, and privacy concerns with the wireless digital devices, the Public Utility Commission of the US state of Maine voted to allow customers to opt out of the meter change at a cost of $12 a month.[74] In Connecticut, another US state to consider smart metering, regulators declined a request by the state's largest utility, Connecticut Light & Power, to install 1.2 million of the devices, arguing that the potential savings in electric bills do not justify the cost. CL&P already offers its customers time-based rates. The state's Attorney General George Jepsen was quoted as saying the proposal would cause customers to spend upwards of $500 million on meters and get few benefits in return, a claim that Connecticut Light & Power disputed.[75]

Lack of savings in results

There are questions whether electricity is or should be primarily a "when you need it" service where the inconvenience/cost-benefit ratio of time shifting of loads is poor. In the Chicago area, Commonwealth Edison ran a test installing smart meters on 8,000 randomly selected households together with variable rates and rebates to encourage cutting back during peak usage.[76] In the Crain's Chicago Business article "Smart grid test underwhelms. In pilot, few power down to save money.", it was reported that fewer than 9% exhibited any amount of peak usage reduction and that the overall amount of reduction was "statistically insignificant".[76] This was from a report by the Electric Power Research Institute, a utility industry think tank who conducted the study and prepared the report. Susan Satter, senior assistant Illinois attorney general for public utilities said "It's devastating to their plan......The report shows zero statistically different result compared to business as usual." [76]

By 2016, the 7 million smart meters in Texas had not persuaded many people to actually check their energy data as the process was too difficult.[77]

A report from a parliamentary group in the UK suggests people who have smart meters installed are expected to save an average of £11 annually on their energy bills, much less than originally hoped.[78]

Erratic demand

Smart meters can allow real-time pricing, and in theory this could help smooth power consumption as consumers adjust their demand in response to price changes. However, modelling by researchers at the University of Bremen suggests that in certain circumstances, "Power demand fluctuations are not dampened but amplified instead."[79]

In the media

In 2013, Take Back Your Power, an independent Canadian documentary directed by Josh del Sol was released describing "dirty electricity" and the aforementioned issues with smart meters.[80] The film explores the various contexts of the health, legal, and economic concerns, and features narration from mayor of Peterborough, Ontario, Daryl Bennett, as well as American researcher De-Kun Li, journalist Blake Levitt,[81] and Dr. Sam Milham. It won a Leo Award for best feature-length documentary and the Annual Humanitarian Award from Indie Fest the following year.

See also

References

  1. ^ Elster REX Archived April 25, 2008, at the Wayback Machine
  2. ^ EnergyAxis LAN 900MHz Frequency-hopping spread-spectrum (FHSS) radio Archived May 9, 2009, at the Wayback Machine
  3. ^ ""EnergyAxis" time-of-use metering". Archived from the original on 2008-04-20.
  4. ^ "SRP: How to read your meter". srpnet.com. Retrieved 25 January 2015.
  5. ^ McMaster University Sustainable Developments in Communities Workshop November 26, 2007 Archived September 10, 2008, at the Wayback Machine
  6. ^ "A3 ALPHA Meter/Collector Data Sheet" (PDF). Archived from the original (PDF) on 2008-09-10.
  7. ^ "Federal Energy Regulatory Commission Assessment of Demand Response & Advanced Metering" (PDF). FERC.gov. Retrieved 16 January 2018.
  8. ^ "Energy monitors: Smart meters and energy monitors explained", Which? (n.d.)
  9. ^ "About Us - Independent voice for consumers | Smart Energy GB". www.smartenergygb.org. Retrieved 2019-07-24.
  10. ^ "Berg Insight's Smart Metering in Western Europe report 2009" (PDF). BergInsight.com. Retrieved 16 January 2018.
  11. ^ Another Reason We Need The Smart Grid Record Heat.
  12. ^ "The Global Smart Meter Market 2012-2022".
  13. ^ "Getting Smarter About the Smart Grid". Getting Smarter About the Smart Grid. 2012-11-26. Retrieved 2013-10-02.
  14. ^ U.S. Patent 3,842,208 (Sensor Monitoring Device)
  15. ^ U.S. Patent 4,241,237 and U.S. Patent 4,455,453 and Canadian Patent # 1,155,243 (Apparatus and Method for Remote Sensor Monitoring, Metering and Control)
  16. ^ Torriti, Jacopo (2016) "Peak energy demand and Demand Side Response" (Routledge): https://www.routledge.com/products/9781138016255
  17. ^ James Sinopoli (ed), Smart Building Systems for Architects, Owners, and Builders Elsevier 2010 ISBN 978-1-85617-653-8 PP. 65-65
  18. ^ McKerracher, C. and Torriti, J. (2013) Energy consumption feedback in perspective: integrating Australian data to meta-analyses on in-home displays. Energy Efficiency, Volume 6 (2). pp 387-405 [1]
  19. ^ Morton, TIFFANY CRAWFORD and Brian (2001-11-24). "Laid off Hydro meter readers still looking for work, union says".
  20. ^ "Smart meter deadline 'should be extended". BBC News. 10 August 2018. Retrieved 8 September 2018.
  21. ^ https://www.cl.cam.ac.uk/~rja14/Papers/fipr-smartmeters2010.pdf
  22. ^ "House of Commons - Public Accounts Committee - Written Evidence".
  23. ^ a b Brodbeck, Sam (2017-03-21). "My smart meter's so 'dumb' I have to press seven buttons to get a reading". The Telegraph.
  24. ^ "Watchdog to review UK smart meter rollout". BBC News. 2018-01-11.
  25. ^ "Rolling out smart meters - National Audit Office (NAO) Report".
  26. ^ "National Audit Office. Report: Rolling out smart meters" (PDF).
  27. ^ https://www.cl.cam.ac.uk/~rja14/Papers/SmartMetering-Feb82012.pdf
  28. ^ Nick Hopkins (17 September 2018). "Ofgem exploited national security law to silence us, whistleblowers claim". The Guardian.
  29. ^ "Utilities Act Is Incompatible With European Convention on Human Rights". Bindmans LLP. 10 December 2018. Retrieved 28 March 2019.
  30. ^ "ETSI - ETSI Approves Open Smart Grid Protocol (OSGP) for Grid Technologies". ETSI. Retrieved 25 January 2015.
  31. ^ "news events". osgp.org. Retrieved 2019-04-09.
  32. ^ Klaus Kursawe and Christiane Peters. "Structural Weaknesses in the Open Smart Grid Protocol". Cryptology ePrint Archive, Report 2015/088.CS1 maint: Uses authors parameter (link)
  33. ^ "Dumb Crypto in Smart Grids: Practical Cryptanalysis of the Open Smart Grid Protocol" (PDF). Cryptology ePrint Archive: Report 2015/428. Retrieved 10 May 2015.
  34. ^ "Feature - The Network". Cisco's The Network. 18 May 2009. Archived from the original on 28 January 2015. Retrieved 25 January 2015.
  35. ^ "Why the Smart Grid must be based on IP standards". Archived from the original on 2011-07-20.
  36. ^ Elster suggests the benefits of a Universal Metering Interface (UMI) Archived 2010-12-29 at the Wayback Machine
  37. ^ See youtube video "Why is my smart meter blinking"
  38. ^ Berger, Lars T.; Schwager, Andreas; Galli, Stefano; Pagani, Pascal; Schneider, Daniel M.; Lioe, Hidayat (February 2014). "Current Power Line Communication Systems: A Survey". In Berger, Lars T.; Schwager, Andreas; Pagani, Pascal; Schneider, Daniel M. (eds.). MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing. Devices, Circuits, and Systems. CRC Press. pp. 253–270. doi:10.1201/b16540-14. ISBN 9781466557529.
  39. ^ "An update on Google Health and Google PowerMeter". Official Google Blog. Retrieved 30 December 2011.
  40. ^ Kopytoff, Verne; Kim, Ryan (2009-02-11). "Google plans meter to detail home energy use". The San Francisco Chronicle. Retrieved 2009-02-11.
  41. ^ Glossary provided by U.S. Department of Energy "Archived copy". Archived from the original on 2012-01-07. Retrieved 2011-04-14.CS1 maint: Archived copy as title (link), Glossary provided by US Department of Energy
  42. ^ BC Hydro offers free fix if meter installers find hazard. 2012-08-09. CBC. Retrieved 2012-08-09.
  43. ^ Jin, M.; Jia, R.; Spanos, C. (2017-01-01). "Virtual Occupancy Sensing: Using Smart Meters to Indicate Your Presence". IEEE Transactions on Mobile Computing. PP (99): 3264–3277. arXiv:1407.4395. doi:10.1109/TMC.2017.2684806. ISSN 1536-1233.
  44. ^ [2] Archived November 16, 2011, at the Wayback Machine
  45. ^ https://www.cl.cam.ac.uk/~rja14/Papers/meters-offswitch.pdf
  46. ^ "Hackers threaten smart power grids". POLITICO. 4 January 2017. Retrieved 9 February 2017.
  47. ^ Hamill, Jasper (10 February 2016). "Hackers could CRASH the electricity grid using this terrifyingly simple trick". Mirror. Retrieved 9 February 2017.
  48. ^ "Blackout - Deutschland ohne Strom" (in German). Retrieved 9 February 2017.
  49. ^ "Smart metering security – Germany leads the way". www.bosch-si.com. Retrieved 9 February 2017.
  50. ^ a b Cardenas, A.; Berthier; Bobba; Huh; Jetcheva; Grochocki (March 2014). "A framework for evaluating intrusion detection architectures in advanced metering infrastructures". IEEE Transactions on Smart Grid. 5 (2): 906–915. doi:10.1109/TSG.2013.2291004.
  51. ^ Faisal1, Mustafa Amir; Aung, Zeyar; Williams, John R.; Sanchez, Abel Sanchez (2012). "Securing Advanced Metering Infrastructure Using Intrusion Detection System with Data Stream Mining" (PDF).
  52. ^ "FBI: Smart Meter Hacks Likely to Spread — Krebs on Security". krebsonsecurity.com. Retrieved 9 February 2017.
  53. ^ Hess, David J., and Jonathan Coley. 2013. “Wireless Smart Meters and Public Acceptance: The Environment, Limited Choices, and Precautionary Politics” Archived 2013-11-03 at the Wayback Machine, Public Understanding of Science Forthcoming.
  54. ^ "Health Impacts of Radio Frequency Exposure from Smart Meters" (PDF).
  55. ^ "PGE replacing 70,000 electricity meters because of fire risk". The Oregonian. 24 July 2014. Retrieved 30 July 2014.
  56. ^ "SaskPower to remove 105,000 smart meters following fires". CBC News. Retrieved 30 July 2014.
  57. ^ Jin, Ming; Jia, Ruoxi; Kang, Zhoayi; Konstantakopoulos, Ioannis C.; Spanos, Costas (2014). "PresenceSense: Zero-training algorithm for individual presence detection based on power monitoring". ACM BuildSys 2014. BuildSys '14: 1–10. arXiv:1407.4395. Bibcode:2014arXiv1407.4395J. doi:10.1145/2674061.2674073. ISBN 9781450331449.
  58. ^ "Towards Energy-Awareness in Managing Wireless LAN Applications". IWSOS 2013: 7th International Workshop on Self-Organizing Systems. Retrieved 2014-08-17.
  59. ^ Z. Li, T. J. Oechtering, and M. Skoglund, ”Privacy-preserving energy flow control in smart grids”, Proc. 41st IEEE ICASSP 2016, Shanghai, China, March 2016. (poster)
  60. ^ "COnsumer-centric Privacy in smart Energy gridS".
  61. ^ "Page or File Not Found". Archived from the original on 2015-02-13.
  62. ^ Cook, Vince Chadwick, Craig Butt, Henrietta (2012-09-22). "Smart meter data shared far and wide".
  63. ^ SMITH, JORDAN (16 Nov 2007). "APD Pot-Hunters Are Data-Mining at AE. Are you using 'too much' energy? Inquiring drug cops want to know". Austin, Texas: The Austin Chronicle. Archived from the original on 16 July 2010. Retrieved 15 February 2015.
  64. ^ Prof. Dr.-Ing U. Greveler; Dr. B. Justus; D. Löhr MSc. (20 September 2011). "Hintergrund und experimentelle Ergebnisse zum Thema "Smart Meter und Datenschutz"" (PDF) (in English and German). Fachhochschule Münster of Applied Sciences. Archived from the original (PDF) on 17 November 2012. Retrieved 15 February 2015.
  65. ^ "Researchers claim smart meters can reveal TV viewing habits". Metering.com. 21 September 2011. Retrieved 15 February 2015.
  66. ^ Tien, Lee (10 Mar 2010). "New "Smart Meters" for Energy Use Put Privacy at Risk". Electronic Frontier Foundation. Retrieved 15 February 2015.
  67. ^ Reitman, Rainey (10 January 2012). "Privacy Roundup: Mandatory Data Retention, Smart Meter Hacks, and Law Enforcement Usage of "Silent SMS"". Electronic Frontier Foundation. Retrieved 15 February 2015.
  68. ^ "Smart Hacking For Privacy". 28th Chaos Communication Congress. 30 December 2011. Retrieved 15 February 2015.
  69. ^ 28th Chaos Communication Congress. 28c3: Smart Hacking for Privacy (Video). YouTube. Retrieved 15 February 2015.
  70. ^ Enev, Miro; Gupta, Sidhant; Kohno, Tadayoshi; Patel, Shwetak N. "Televisions, Video Privacy, and Powerline Electromagnetic Interference" (PDF). University of Washington.
  71. ^ Roach, John (20 September 2011). "Technologist wins 'genius' award for sensor tech". NBC News. Retrieved 15 February 2015.
  72. ^ https://www.fipr.org/100110smartmeters.pdf
  73. ^ "Kauai Island Utility Cooperative adopts smart meter deferral policy".
  74. ^ State regulators to vote on PG&E smart meter "opt-out", San Jose Mercury News, 2012-02-01.
  75. ^ "Connecticut Attorney General Tries to Derail Smart Meters". Smartmeters.com. Retrieved 19 December 2011.
  76. ^ a b c "Smart grid test underwhelms". Archived from the original on March 7, 2013. Retrieved September 3, 2012.Smart grid test underwhelms. In pilot, few power down to save money by Paul Merrion Crain's Chicago Business May 30, 2011 Retrieved September 3, 2012
  77. ^ "Texas Has Millions of Smart Meters. So Why Haven't Third-Party Energy Services Blossomed?". 2016-10-14. Retrieved October 17, 2016.
  78. ^ "Smart meters to cut bills 'by just £11'". 2018-07-21. Retrieved 2019-07-24.
  79. ^ Krause, Sebastian M.; Börries, Stefan; Bornholdt, Stefan (2015). "Econophysics of adaptive power markets: When a market does not dampen fluctuations but amplifies them". Physical Review E. 92 (1): 012815. arXiv:1303.2110. Bibcode:2015PhRvE..92a2815K. doi:10.1103/PhysRevE.92.012815. PMID 26274233.
  80. ^ "Take Back Your Power (2013)". Internet Movie Database. IMBd.com. Retrieved 22 January 2015.
  81. ^ B. Blake Levitt (12 November 2014). "My Works - B. Blake Levitt". blakelevitt.com. Retrieved 25 January 2015.

External links